Advertisements
Advertisements
प्रश्न
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
उत्तर
`(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Applying componendo and dividendo,
`(sqrt(1 + x) + sqrt(1 - x) + sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x) - sqrt(1 + x) + sqrt(1 - x)) = (a + b)/(a - b)`
⇒ `(2sqrt(1 + x))/(2sqrt(1 - x)) = (a + b)/(a - b)`
⇒ `(sqrt(1 + x))/(sqrt(1 - x)) = (a + b)/(a - b)`
Squaring both sides,
`(1 + x)/(1 - x) = (a + b)^2/(a - b)^2`
Again applying componendo and dividendo,
`(1 + x + 1 - x)/(1 + x - 1 + x)`
= `((a + b)^2 + (a - b)^2)/((a + b)^2 - (a - b)^2)`
⇒ `(2)/(2x) = (2(a^2 + b^2))/(4ab)`
⇒ `(1)/x = (a^2 + b^2)/(2ab)`
∴ x = `(2ab)/(a^2 + b^2)`.
APPEARS IN
संबंधित प्रश्न
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
if x = `(sqrt(a + 1) + sqrt(a-1))/(sqrt(a + 1) - sqrt(a - 1))` using properties of proportion show that `x^2 - 2ax + 1 = 0`
If a : b = c : d, prove that: 5a + 7b : 5a – 7b = 5c + 7d : 5c – 7d.
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If (4a + 9b)(4c – 9d) = (4a – 9b)(4c + 9d), prove that: a : b = c : d.
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If (4a + 5b) (4c – 5d) = (4a – 5d) (4c + 5d), prove that a, b, c, d are in proporton.
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.