Advertisements
Advertisements
Question
Find x from the following equations : `(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Solution
`(sqrt(1 + x) + sqrt(1 - x))/(sqrt(1 + x) - sqrt(1 - x)) = a/b`
Applying componendo and dividendo,
`(sqrt(1 + x) + sqrt(1 - x) + sqrt(1 + x) - sqrt(1 - x))/(sqrt(1 + x) + sqrt(1 - x) - sqrt(1 + x) + sqrt(1 - x)) = (a + b)/(a - b)`
⇒ `(2sqrt(1 + x))/(2sqrt(1 - x)) = (a + b)/(a - b)`
⇒ `(sqrt(1 + x))/(sqrt(1 - x)) = (a + b)/(a - b)`
Squaring both sides,
`(1 + x)/(1 - x) = (a + b)^2/(a - b)^2`
Again applying componendo and dividendo,
`(1 + x + 1 - x)/(1 + x - 1 + x)`
= `((a + b)^2 + (a - b)^2)/((a + b)^2 - (a - b)^2)`
⇒ `(2)/(2x) = (2(a^2 + b^2))/(4ab)`
⇒ `(1)/x = (a^2 + b^2)/(2ab)`
∴ x = `(2ab)/(a^2 + b^2)`.
APPEARS IN
RELATED QUESTIONS
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
If y = `((p + 1)^(1/3) + (p - 1)^(1/3))/((p + 1)^(1/3) - (p - 1)^(1/3)` find that y3 - 3py2 + 3y - p = 0.
If a : b : : c : d, prove that (la + mb) : (lc + mb) :: (la – mb) : (lc – mb)
If (11a² + 13b²) (11c² – 13d²) = (11a² – 13b²)(11c² + 13d²), prove that a : b :: c : d.
Find x from the following equations : `(3x + sqrt(9x^2 - 5))/(3x - sqrt(9x^2 - 5)) = (5)/(1)`
Given `x = (sqrt(a^2 + b^2) + sqrt(a^2 - b^2))/(sqrt(a^2 + b^2) - sqrt(a^2 - b^2)`. Use componendo and dividendo to prove that: `b^2 = (2a^2x)/(x^2 + 1)`
If a : b = 2 : 1, the value of (7a + 4b) : (5a – 2b) is ______.
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.