Advertisements
Advertisements
Question
If (a + b) : (a – b) = 13 : 3 ; a : b is ______.
Options
`13/3`
`3/13`
`5/8`
`8/5`
Solution
If (a + b) : (a – b) = 13 : 3 ; a : b is `underlinebb(8/5)`.
Explanation:
Given `(a + b)/(a - b) = 13/3`
Applying componendo and dividendo,
`(a + b + a - b)/(a + b - (a - b)) = (13 + 3)/(13 - 3)`
`\implies (2a)/(a + b - a + b) = 16/10`
`\implies (2a)/(2b) = 8/5`
`\implies a/b = 8/5`
RELATED QUESTIONS
If `x = (6ab)/(a + b)`, find the value of `(x + 3a)/(x - 3a) + (x + 3b)/(x - 3b)`.
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
If a : b :: c : d :: e : f, then prove that `("ae" + "bf")/("ae" - "bf")` = `("ce" + "df")/("ce" - "df")`
Given that `(a^3 + 3ab^2)/(b^2 + 3a^2b) = (63)/(62)`.
Using Componendo and Dividendo find a : b.
If `(3x + 5y)/(3x - 5y) = (7)/(3)`, find x : y.
Solve for x : `(1 - px)/(1 + px) = sqrt((1 + qx)/(1 - qx)`
If `(8a - 5b)/(8c - 5a) = (8a + 5b)/(8c + 5d)`, prove that `a/b = c/d`
If x = `(4sqrt(6))/(sqrt(2) + sqrt(3)` find the value of `(x + 2sqrt(2))/(x - 2sqrt(2)) + (x + 2sqrt(3))/(x - 2sqrt(3)`
Find x from the following equations : `(sqrt(x + 4) + sqrt(x - 10))/(sqrt(x + 4) - sqrt(x - 10)) = (5)/(2)`
If `(by + cz)/(b^2 + c^2) = (cz + ax)/(c^2 + a^2) = (ax + by)/(a^2 + b^2)`, prove that each of these ratio is equal to `x/a = y/b = z/c`