Advertisements
Advertisements
Question
If `x = (2ab)/(a + b)`, find the value of `(x + a)/(x - a) + (x +b)/(x - b)`.
Solution
`x = (2ab)/(a + b)`
`x/a = (2b)/(a + b)`
Applying componendo and dividendo,
`(x + a)/(x - a) = (2b + a + b)/(2b - a - b)`
`(x + a)/(x - a) = (3b + a)/(b - a)` ...(1)
Also, `x = (2ab)/(a + b)`
Applying componendo and dividendo,
`(x + b)/(x - b) = (2a + a + b)/(2a - a - b)`
`(x + b)/(x - b) = (3a + a)/(a - b)` ...(2)
From (1) and (2)
`(x + a)/(x - a) + (x + b)/(x - b) = (3b + a)/(b - a) + (3a + b)/(a - b)`
`(x + a)/(x - a) + (x + b)/(x - b) = (-3b - a + 3a + b)/(a - b)`
`(x + a)/(x - a) + (x + b)/(x - b) = (2a - 2b)/(a - b) = 2`
APPEARS IN
RELATED QUESTIONS
if `(x^2 + y^2)/(x^2 - y^2) = 17/8`then find the value of :
1) x : y
2) `(x^3 + y^3)/(x^3 - y^3)`
If (7a + 8b)(7c – 8d) = (7a – 8b)(7c + 8d); prove that a : b = c : d.
If `(x^2 + y^2)/(x^2 - y^2) = 2 1/8`, find: `x/y`
If `x = (sqrt(a + 1) + sqrt(a - 1))/(sqrt(a + 1) - sqrt(a - 1))`, using properties of proportion show that: x2 – 2ax + 1 = 0.
If a : b : : c : d, then prove that
7a+11b : 7a -11b = 7c +11d : 7c - 11d
If a : b = c : d , then prove that `("a"^2 + "ab" +
"b"^2)/("a"^2 - "ab" + "b"^2) = ("c"^2 + "cd"+ "d"^2)/("c"^2 - "cd" + "d"^2)`
If (a + 3b + 2c + 6d) (a – 3b – 2c + 6d) = (a + 3b – 2c – 6d) (a – 3b + 2c – 6d), prove that a : b :: c : d.
If x = `(8ab)/"a + b"` find the value of `(x + 4a)/(x - 4a) + (x + 4b)/(x - 4b)`
If x = `"pab"/(a + b)`, provee that `(x + pa)/(x - pa) - (x + pb)/(x - pb) = (2(a^2 - b^2))/(ab)`
If (m + n) : (n – m) = 5 : 2 ; m : n is ______.