हिंदी

Construct a Triangle Abc with Ab = 5.5 Cm, Ac = 6 Cm and ∠Bac = 105° Construct the Locus of Points Equidistant from Ba and Bc Construct the Locus of Points Equidistant from B and C. Mark the Point Which Satisfies the Above Two Loci as P. Measure and Write the Length of Pc. - Mathematics

Advertisements
Advertisements

प्रश्न

Construct a triangle ABC with AB = 5.5 cm, AC = 6 cm and ∠BAC = 105°

Hence:

1) Construct the locus of points equidistant from BA and BC

2) Construct the locus of points equidistant from B and C.

3) Mark the point which satisfies the above two loci as P. Measure and write the length of PC.

उत्तर

1) Draw a line segment AB of length 5.5 cm.

2) Make an angle m∠BAX = 105° using a protractor

3) Draw an arc AC with radius AC = 6 cm on AX with centre at A.

4) Join BC.

Thus ΔABC is the required triangle.

a) Draw BR, the bisector of ∠ABC, which is the locus of points equidistant from BA and BC.

b) Draw MN, the perpendicular bisector of BC, which is the locus of points equidistant from B and C

c) The angle bisector of ∠ABC and the perpendicular bisector of BC meet at point P. Thus, P satisfies the above two loci.

Length of PC = 4.8 cm

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Describe the locus of a point in space, which is always at a distance of 4 cm from a fixed point.  


Draw an angle ABC = 75°. Find a point P such that P is at a distance of 2 cm from AB and 1.5 cm from BC.


Construct a triangle ABC, with AB = 5.6 cm, AC = BC = 9.2 cm. Find the points equidistant from AB and AC; and also 2 cm from BC. Measure the distance between the two points obtained. 


Plot the points A(2, 9), B(–1, 3) and C(6, 3) on graph paper. On the same graph paper draw the locus of point A so that the area of ΔABC remains the same as A moves. 


Construct a ti.PQR, in which PQ=S. 5 cm, QR=3. 2 cm and PR=4.8 cm. Draw the locus of a point which moves so that it is always 2.5 cm from Q. 


Draw and describe the lorus in the following cases: 

The lorus of a point in rhombus ABCD which is equidistant from AB and AD .


Draw and describe the locus in the following cases :

The locus of a point in the rhombus ABCD which is equidistant from the point  A and C


State and draw the locus of a point equidistant from two given parallel lines.


Using ruler and compasses construct:
(i) a triangle ABC in which AB = 5.5 cm, BC = 3.4 cm and CA = 4.9 cm.
(ii) the locus of point equidistant from A and C.
(iii) a circle touching AB at A and passing through C.


Ruler and compasses only may be used in this question. All construction lines and arcs must be clearly shown, and be of sufficient length and clarity to permit assessment.
(i) Construct a ΔABC, in which BC = 6 cm, AB = 9 cm and ∠ABC = 60°.
(ii) Construct the locus of the vertices of the triangles with BC as base, which are equal in area to ΔABC.
(iii) Mark the point Q, in your construction, which would make ΔQBC equal in area to ΔABC, and isosceles.
(iv) Measure and record the length of CQ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×