Advertisements
Advertisements
प्रश्न
If `x = (sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, prove that: 3bx2 – 2ax + 3b = 0.
उत्तर
`x = (sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`
Applying componendo and dividendo, we get,
`(x + 1)/(x - 1) = (sqrt(a + 3b) + sqrt(a - 3b) + sqrt(a + 3b) - sqrt(a - 3b))/(sqrt(a + 3b) + sqrt(a - 3b) - sqrt(a + 3b) + sqrt(a - 3b))`
`(x + 1)/(x - 1)= (2sqrt(a + 3b))/(2sqrt(a - 3b))`
Squaring both sides,
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a + 3b)/(a - 3b)`
Again applying componendo and dividendo,
`(x^2 + 2x + 1 + x^2 - 2x + 1)/(x^2 + 2x + 1 - x^2 + 2x - 1) = (a + 3b + a - 3b)/(a + 3b - a + 3b)`
`(2(x^2 + 1))/(2(2x)) = (2(a))/(2(3b))`
3b(x2 + 1) = 2ax
3bx2 + 3b = 2ax
3bx2 – 2ax + 3b = 0
APPEARS IN
संबंधित प्रश्न
If `a/b = c/d`, show that: `(a^3c + ac^3)/(b^3d + bd^3) = (a + c)^4/(b + d)^4`.
If a, b, c and d are in proportion prove that `sqrt((4a^2 + 9b^2)/(4c^2 + 9d^2)) = ((xa^3 - 4yb^3)/(xc^3 - 5yd^3))^(1/3)`
If (a2 + b2)(x2 + y2) = (ax + by)2; prove that: `a/x = b/y`.
If a, b, c, d are in continued proportion, prove that:
(a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2.
Verify the following:
108 : 72 : : 129 : 86
If a, b, c and d are in proportion, prove that: (ma + nb) : b = (mc + nd) : d
Find the missing number in the box in the proportions:
`8/square = 3.2/4`
There is a number in the box `square` such that `square`, 24, 9, 12 are in proportion. The number in the box is ______.
Determine if the following ratios form a proportion. Also, write the middle terms and extreme terms where the ratios form a proportion.
39 litres : 65 litres and 6 bottles : 10 bottles
If x : y = y : z, then x2 : y2 is ______.