Advertisements
Advertisements
प्रश्न
If `x = (sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`, prove that: 3bx2 – 2ax + 3b = 0.
उत्तर
`x = (sqrt(a + 3b) + sqrt(a - 3b))/(sqrt(a + 3b) - sqrt(a - 3b))`
Applying componendo and dividendo, we get,
`(x + 1)/(x - 1) = (sqrt(a + 3b) + sqrt(a - 3b) + sqrt(a + 3b) - sqrt(a - 3b))/(sqrt(a + 3b) + sqrt(a - 3b) - sqrt(a + 3b) + sqrt(a - 3b))`
`(x + 1)/(x - 1)= (2sqrt(a + 3b))/(2sqrt(a - 3b))`
Squaring both sides,
`(x^2 + 2x + 1)/(x^2 - 2x + 1) = (a + 3b)/(a - 3b)`
Again applying componendo and dividendo,
`(x^2 + 2x + 1 + x^2 - 2x + 1)/(x^2 + 2x + 1 - x^2 + 2x - 1) = (a + 3b + a - 3b)/(a + 3b - a + 3b)`
`(2(x^2 + 1))/(2(2x)) = (2(a))/(2(3b))`
3b(x2 + 1) = 2ax
3bx2 + 3b = 2ax
3bx2 – 2ax + 3b = 0
APPEARS IN
संबंधित प्रश्न
Using properties of proportion, solve for x. Given that x is positive:
`(2x + sqrt(4x^2 -1))/(2x - sqrt(4x^2 - 1)) = 4`
Find the third proportional to `x/y + y/x` and `sqrt(x^2 + y^2)`
Find the fourth proportion to the following:
(p2q - qr2 ), (pqr - pr2 ) and (pq2 - pr2)
If ( a+c) : b = 5 : 1 and (bc + cd) : bd = 5 : 1, then prove that a : b = c : d
If u, v, w, and x are in continued proportion, then prove that (2u+3x) : (3u+4x) : : (2u3+3v3) : (3u3+4v3)
Find the mean proportion of: 8.1 and 2.5
Determine if the following numbers are in proportion:
32, 48, 70, 210
Are 30, 40, 45, and 60 in proportion?
Fill the boxes using any set of suitable numbers 6 : `square` : : `square` : 15
Write True (T) or False (F) against the following statement:
0.9 : 0.36 : : 10 : 4