Advertisements
Advertisements
Question
Find x and y if
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`.
Solution
`[( x , 3x),(y , 4y)][(2),(1)] = [(5),(12)]`
⇒ `[(2x + 3x),(2y + 4y)] = [(5),(12)]`
⇒ `[(5x),(6y)] = [(5),(12)]`
⇒ 5x = 5
⇒ x = 1
and
⇒ 6y = 12
⇒ y = 2.
APPEARS IN
RELATED QUESTIONS
Given A = `[(2, 0),(-1, 7)]` and I = `[(1, 0),(0, 1)]` and A2 = 9A + ml. Find m.
if `A = [(3,x),(0,1)], B = [(9,16),(0,-y)]`, Find x and y where `A^2 = B`
Evaluate:
`3[(5, -2)]`
If A and B are any two 2 × 2 matrices such that AB = BA = B and B is not a zero matrix, what can you say about the matrix A?
Evaluate:
`[(cos 45°, sin 30°),(sqrt(2) cos 0°, sin 0°)] [(sin 45°, cos 90°),(sin 90°, cot 45°)]`
If A = `[(1, 2),(2, 1)]` and B = `[(2, 1),(1, 2)]`; find A(BA)
If A = `|(1215),(1117)|` and B = `|(2,7),(4,9)|` find : 2A + 3B
If P = `|(2,9),(5 , 7)|` and Q = `|(7 , 3),(4 , 1)|` find 3P - 2Q
Choose the correct answer from the given four options :
If B = `[(1, 5),(0, 3)]` and A – 2B = `[(0, 4),(-7, 5)]` then the matrix A is equal to
Given matrix, X = `[(1, 1),(8, 3)]` and I = `[(1, 0),(0, 1)]`, prove that X2 = 4X + 5I