Advertisements
Advertisements
प्रश्न
Find x and y if `|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|` = x + iy, where i = `sqrt(-1)`.
उत्तर
`|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|`
= `|(4"i", -"i", 2"i"),(1, -3, 4),(5, -3, "i")|` ...[∵ i2 = – 1]
= `4"i"|(-3, 4),(-3, "i")| - (- "i")|(1, 4),(5, "i")| + 2"i"|(1, -3),(5, -3)|`
= 4i(– 3i + 12) + i(i – 20) + 2i(– 3 + 15)
= – 12i2 + 48i + i2 – 20i + 24i
= – 11i2 + 52i
= – 11(– 1) + 52i ...[∵ i2 = – 1]
= 11 + 52i
Comparing with x + iy, we get
x = 11, y = 52
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(2"i", 3),(4, -"i")|`
Find the value(s) of x, if `|(2, 3),(4, 5)| = |(x, 3),(2x, 5)|`
Without expanding evaluate the following determinant:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Evaluate: `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
If `Delta = |(1,2,3),(3,1,2),(2,3,1)|` then `|(3,1,2),(1,2,3),(2,3,1)|` is
If Δ = `|(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is cofactor of aij, then value of Δ is given by:
If `|(x,2),(8,5)|` = 0 then the value of x is
Solve: `|(x,2,-1),(2,5,x),(-1,2,x)|` = 0
Evaluate the following determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Evaluate the following determinants:
`|(1, i, 3),(i^3, 2, 5),(3, 2, i^4)|`
Evaluate the following determinant:
`|(a, h, g), (h, b, f), (g, f, c)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Find the value of x if
`|(x, -1, 2),(2x, 1, -3), (3, -4, 5)| `= 29
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinants:
`|(4, 7),(-7, 0)|`
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
Evaluate the following determinant.
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`[(a, h, g),(h, b, f),(g, f, c)]`