Advertisements
Advertisements
प्रश्न
Find x and y if `|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|` = x + iy, where i = `sqrt(-1)`.
उत्तर
`|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|`
= `|(4"i", -"i", 2"i"),(1, -3, 4),(5, -3, "i")|` ...[∵ i2 = – 1]
= `4"i"|(-3, 4),(-3, "i")| - (- "i")|(1, 4),(5, "i")| + 2"i"|(1, -3),(5, -3)|`
= 4i(– 3i + 12) + i(i – 20) + 2i(– 3 + 15)
= – 12i2 + 48i + i2 – 20i + 24i
= – 11i2 + 52i
= – 11(– 1) + 52i ...[∵ i2 = – 1]
= 11 + 52i
Comparing with x + iy, we get
x = 11, y = 52
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
`|(0, "a", -"b"),(-"a", 0, -"c"),("b", "c", 0)|`
Find the minors and cofactors of all the elements of the following determinant.
`|(1,-3,2),(4,-1,2),(3,5,2)|`
Evaluate `|(3,-2,4),(2,0,1),(1,2,3)|`
The value of `|(2x + y,x,y),(2y+z,y,z),(2z+x,z,x)|` is
If Δ = `|(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is cofactor of aij, then value of Δ is given by:
If any three rows or columns of a determinant are identical then the value of the determinant is:
Solve: `|(x,2,-1),(2,5,x),(-1,2,x)|` = 0
Without actual expansion show that the value of the determinant `|(5,5^2,5^3),(5^2,5^3,5^4),(5^4,5^5,5^6)|` is zero.
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Without expanding evaluate the following determinant.
`|(1, a, a + c),(1, b, c+a), (1, c, a+b)|`
Evaluate the following determinant :
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Without expanding evaluate the following determinant.
`|(1,a,a+c),(1,b,c+a),(1,c,a+b)|`
Find the value of x if
`|(x, -1, 2),(2x, 1, -3), (3, -4, 5)| `= 29
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant.
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29.