Advertisements
Advertisements
प्रश्न
Solve: `|(x,2,-1),(2,5,x),(-1,2,x)|` = 0
उत्तर
Expanding along R1 we get
`x|(5,x),(2,x)| - 2|(2,x),(-1,x)| - 1|(2,5),(-1,2)|` = 0
⇒ x(5x - 2x) - 2(2x + x) - 1(4 + 5) = 0
⇒ x(3x) - 2(3x) - 1(9) = 0
⇒ 3x2 - 6x - 9 = 0
⇒ x2 - 2x - 3 = 0 ....(Divided by 3)
⇒ (x - 3)(x + 1) = 0
⇒ x = 3 or -1
APPEARS IN
संबंधित प्रश्न
Find the value of x, if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)|` = 29
Evaluate: `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
Find the minors and cofactors of all the elements of the following determinant.
`|(5,20),(0, -1)|`
Evaluate `|(3,-2,4),(2,0,1),(1,2,3)|`
The value of `|(5,5,5),(4x,4y,4z),(-3x,-3y,-3z)|` is
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Without expanding evaluate the following determinant.
`|(1,a,a+c),(1,b,c+a),(1,c,a+b)|`
Evaluate the following determinant:
`[(4, 7) ,(-7, 0)]`
Evaluate the following determinant:
`[(a, h, g),(h, b, f),(g, f, c)]`
Evaluate the following determinant:
`|(4, 7),(-7, 0)|`