Advertisements
Advertisements
प्रश्न
Evaluate `|(10041,10042,10043),(10045,10046,10047),(10049,10050,10051)|`
उत्तर
Applying the elementary transformation
R2 → R2 - R1, R3 → R3 - R2 we get
`|(10041,10042,10043),(4,4,4),(4,4,4)|` = 0 ....(R2 ≡ R3)
APPEARS IN
संबंधित प्रश्न
Solve the following equation : `|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
Find the minors and cofactors of all the elements of the following determinant.
`|(1,-3,2),(4,-1,2),(3,5,2)|`
Evaluate: `|(1,a,a^2 - bc),(1,b,b^2 - ca),(1,c,c^2 - ab)|`
If `Delta = |(1,2,3),(3,1,2),(2,3,1)|` then `|(3,1,2),(1,2,3),(2,3,1)|` is
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant :
`|(4,7),(-7,0)|`
Evaluate the following determinant :
`|(a,h,g),(h,b,f),(g,f,c)|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Find the value of x if
`|(x, -1, 2),(2x, 1, -3), (3, -4, 5)| `= 29
Evaluate the following determinant:
`|(a,h ,g), (h,b,f), (g,f,c)|`