Advertisements
Advertisements
Question
Evaluate `|(10041,10042,10043),(10045,10046,10047),(10049,10050,10051)|`
Solution
Applying the elementary transformation
R2 → R2 - R1, R3 → R3 - R2 we get
`|(10041,10042,10043),(4,4,4),(4,4,4)|` = 0 ....(R2 ≡ R3)
APPEARS IN
RELATED QUESTIONS
Evaluate `|(3,-2,4),(2,0,1),(1,2,3)|`
If A is square matrix of order 3 then |kA| is
Solve: `|(x,2,-1),(2,5,x),(-1,2,x)|` = 0
Evaluate the following determinant :
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Without expanding evaluate the following determinant.
`|(1,a,a + c),(1,b,c + a),(1,c,a + b)|`
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Evaluate the following determinant :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`