Advertisements
Advertisements
Question
If A is square matrix of order 3 then |kA| is
Options
k|A|
- k|A|
k3|A|
- k3|A|
Solution
k3|A|
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
Prove that `|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|` = 0
Show that `|(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2c,b^2c,0)| = 2a^3b^3c^3`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c,a+b)|`
Without expanding evaluate the following determinant.
`|(1,a,a + c),(1,b,c + a),(1,c,a + b)|`
Find the value of x if
`|(x, -1, 2),(2x, 1 , -3) ,(3, -4, 5)|` = 29
By using properties of determinant prove that
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0
Evaluate the following determinants:
`|(4, 7),(-7, 0)|`
Evaluate the following determinant:
`|(4, 7), (-7, 0)|`
Evaluate the following determinant:
`|(a, h, g),(h, b, f),(g, f, c)|`