Advertisements
Advertisements
Question
Prove that `|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|` = 0
Solution
`|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|`
= `1/"abc" |(a/a,abc,a(b+c)),(b/b,abc,b(c+a)),(c/c,abc,c(a+b))|` ....(Multiply R1 by a, R2 by b, R3 by c and divide the determinant by abc)
= `"abc"/"abc" |(1,1,a(b + c)),(1,1,b(c+a)),(1,1,c(a + b))|` ....(Take out abc from C2 = 0 [∵ C1 ≡ C2])
Hence proved.
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinant:
`|(4, 7),(-7, 0)|`
Solve the following equation : `|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
Find the value of x, if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)|` = 29
Evaluate: `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
The value of `|(x,x^2 - yz,1),(y,y^2-zx,1),(z,z^2-xy,1)|` is
If A = `|(cos theta,sin theta),(-sin theta,cos theta)|`, then |2A| is equal to
Evaluate the following determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Evaluate the following determinant.
`|(4,7),(-7,0)|`
Evaluate the following determinant.
`|(3,-5,2),(1,8,9),(3,7,0)|`