Advertisements
Advertisements
Question
Prove that `|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = 4a^2b^2c^2`
Solution
`|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|`
= `abc|(-a,b,c),(a,-b,c),(a,b,-c)|` ....(Take out a,b,c respectively from R1, R2 and R3)
= `a^2b^2c^2 |(-1,1,1),(1,-1,1),(1,1,-1)|` ...(Take out a,b,c respectively from C1, C2 and C3)
= `a^2b^2c^2 |(-1,1,1),(0,0,2),(0,2,0)|` ...`[("R"_2 -> "R"_2 + "R"_1),("R"_3 -> "R"_3 + "R"_1)]`
= a2b2c2 [-(0 – 4) + 0 + 0]
= 4a2b2c2
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinants: `|(3, -4, 5),(1, 1, -2),(2, 3, 1)|`
If A is a square matrix of order 3 and |A| = 3 then |adj A| is equal to:
Evaluate the following determinant :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|=29`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Find the value of x if
`|(x, -1, 2),(2x, 1, -3), (3, -4, 5)| `= 29
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`