Advertisements
Advertisements
प्रश्न
Prove that `|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = 4a^2b^2c^2`
उत्तर
`|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)|`
= `abc|(-a,b,c),(a,-b,c),(a,b,-c)|` ....(Take out a,b,c respectively from R1, R2 and R3)
= `a^2b^2c^2 |(-1,1,1),(1,-1,1),(1,1,-1)|` ...(Take out a,b,c respectively from C1, C2 and C3)
= `a^2b^2c^2 |(-1,1,1),(0,0,2),(0,2,0)|` ...`[("R"_2 -> "R"_2 + "R"_1),("R"_3 -> "R"_3 + "R"_1)]`
= a2b2c2 [-(0 – 4) + 0 + 0]
= 4a2b2c2
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(5, 5, 5),(5, 4, 4),(5, 4, 8)|`
Find x and y if `|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|` = x + iy, where i = `sqrt(-1)`.
The value of `|(5,5,5),(4x,4y,4z),(-3x,-3y,-3z)|` is
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c,a+b)|`
Evaluate the following determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Evaluate the following determinants:
`|(1, i, 3),(i^3, 2, 5),(3, 2, i^4)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`
Evaluate the following determinant.
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`[(a, h, g),(h, b, f),(g, f, c)]`