Advertisements
Advertisements
प्रश्न
Prove that `|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|` = 0
उत्तर
`|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|`
= `1/"abc" |(a/a,abc,a(b+c)),(b/b,abc,b(c+a)),(c/c,abc,c(a+b))|` ....(Multiply R1 by a, R2 by b, R3 by c and divide the determinant by abc)
= `"abc"/"abc" |(1,1,a(b + c)),(1,1,b(c+a)),(1,1,c(a + b))|` ....(Take out abc from C2 = 0 [∵ C1 ≡ C2])
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate `|(3,-2,4),(2,0,1),(1,2,3)|`
The value of x if `|(0,1,0),(x,2,x),(1,3,x)|` = 0 is
Evaluate the following determinant :
`|(4,7),(-7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|= 29`
Evaluate the following determinant:
`|(a, h, g), (h, b, f), (g, f, c)|`
Evaluate the following determinant:
`[(a, h, g),(h, b, f),(g, f, c)]`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29.