Advertisements
Advertisements
प्रश्न
Prove that `|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|` = 0
उत्तर
`|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|`
= `1/"abc" |(a/a,abc,a(b+c)),(b/b,abc,b(c+a)),(c/c,abc,c(a+b))|` ....(Multiply R1 by a, R2 by b, R3 by c and divide the determinant by abc)
= `"abc"/"abc" |(1,1,a(b + c)),(1,1,b(c+a)),(1,1,c(a + b))|` ....(Take out abc from C2 = 0 [∵ C1 ≡ C2])
Hence proved.
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
`|("a", "h", "g"),("h", "b", "f"),("g", "f","c")|`
Evaluate: `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
Find the minors and cofactors of all the elements of the following determinant.
`|(1,-3,2),(4,-1,2),(3,5,2)|`
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
The value of `|(2x + y,x,y),(2y+z,y,z),(2z+x,z,x)|` is
If any three rows or columns of a determinant are identical then the value of the determinant is:
Evaluate `|(10041,10042,10043),(10045,10046,10047),(10049,10050,10051)|`
Evaluate the following determinants :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Without expanding evaluate the following determinant.
`|(1,a,a + c),(1,b,c + a),(1,c,a + b)|`
Evaluate the following determinant:
`|(4, 7), (-7, 0)|`