Advertisements
Advertisements
प्रश्न
Evaluate: `|(1,a,a^2 - bc),(1,b,b^2 - ca),(1,c,c^2 - ab)|`
उत्तर
`|(1,a,a^2 - bc),(1,b,b^2 - ca),(1,c,c^2 - ab)|`
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| + |(1,a,- bc),(1,b,- ca),(1,c,- ab)|` ...(By property 6)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - |(1,a,bc),(1,b,ca),(1,c,ab)|` ...(Take out -1 from C3)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - 1/"abc" |(a,a^2,abc),(b,b^2,abc),(c,c^2,abc)|` .....(Multiply R1 by a, R2 by b, R3 by c and divide the determinant by abc)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - "abc"/"abc" |(a,a^2,1),(b,b^2,1),(c,c^2,1)|` ....(Take out abc from C3)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| + |(a,1,a^2),(b,1,b^2),(c,1,c^2)|` ..... (C2 ↔ C3)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - |(1,a,a^2),(1,b,b^2),(1,c,c^2)|` ..... (C1 ↔ C2)
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
`|(4, 7),(-7, 0)|`
Evaluate the following determinant:
`|("a", "h", "g"),("h", "b", "f"),("g", "f","c")|`
If A is square matrix of order 3 then |kA| is
If A = `|(cos theta,sin theta),(-sin theta,cos theta)|`, then |2A| is equal to
If `|(x,2),(8,5)|` = 0 then the value of x is
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|= 29`
Find the value of x if `|(x, 2x, 3),(-1, 1, -4),(3, -3, 5)|` = 29
Evaluate the following determinant:
`|(4, 7),(-7, 0)|`