Advertisements
Advertisements
प्रश्न
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
उत्तर
`|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
∴ `7 |(5,x),(3,1)| - 4|(-3,x),(-x,1)| + 11|(-3,5),(-x,3)|` = 0
7(5 – 3x) – 4(-3 + x2) + 11(-9 + 5x) = 0
35 – 21x + 12 – 4x2 – 99 + 55x = 0
- 4x2 – 21x + 55x + 35 + 12 – 99 = 0
- 4x2 + 34x – 52 = 0
2 × 26 = 52 | |
-13 | - 4 |
`(- 13)/2` | `(-4)/2` |
Divide throughout by -2 we get
2x2 – 17x + 26 = 0
(2x – 13) (x – 2) = 0
2x – 13 = 0 (or) x – 2 = 0
x = `13/2` (or) x = 2
∴ x = `13/2`, x = 2
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(5, 5, 5),(5, 4, 4),(5, 4, 8)|`
Find x and y if `|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|` = x + iy, where i = `sqrt(-1)`.
Evaluate the following determinants :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinants:
`|(4,7),(-7,0)|`
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|=29`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|= 29`
Find the value of x if
`|(x, -1, 2),(2x, 1, -3), (3, -4, 5)| `= 29
Evaluate the following determinant.
`|(4,7),(-7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(a, h, g), (h, b, f), (g, f, c)|`