Advertisements
Advertisements
प्रश्न
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
उत्तर
`|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
∴ `7 |(5,x),(3,1)| - 4|(-3,x),(-x,1)| + 11|(-3,5),(-x,3)|` = 0
7(5 – 3x) – 4(-3 + x2) + 11(-9 + 5x) = 0
35 – 21x + 12 – 4x2 – 99 + 55x = 0
- 4x2 – 21x + 55x + 35 + 12 – 99 = 0
- 4x2 + 34x – 52 = 0
2 × 26 = 52 | |
-13 | - 4 |
`(- 13)/2` | `(-4)/2` |
Divide throughout by -2 we get
2x2 – 17x + 26 = 0
(2x – 13) (x – 2) = 0
2x – 13 = 0 (or) x – 2 = 0
x = `13/2` (or) x = 2
∴ x = `13/2`, x = 2
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(2"i", 3),(4, -"i")|`
Find the minors and cofactors of all the elements of the following determinant.
`|(5,20),(0, -1)|`
Solve: `|(x,2,-1),(2,5,x),(-1,2,x)|` = 0
Without actual expansion show that the value of the determinant `|(5,5^2,5^3),(5^2,5^3,5^4),(5^4,5^5,5^6)|` is zero.
Evaluation the following determination: `|(4,7),(-7, 0)| `
Evaluate the following determinant :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`