Advertisements
Advertisements
प्रश्न
Without actual expansion show that the value of the determinant `|(5,5^2,5^3),(5^2,5^3,5^4),(5^4,5^5,5^6)|` is zero.
उत्तर
Taking 5, 52 and 54 common from R1, R2 and R3 respectively we get
`|(5,5^2,5^3),(5^2,5^3,5^4),(5^4,5^5,5^6)| = 5 xx 5^2 xx 5^4 |(1,5,5^2),(1,5,5^2),(1,5,5^2)|`
= 5 × 5^2 × 5^4 × 0 = 0 ....[R1 ≡ R2 ≡ R3]
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(1, "i", 3),("i"^3, 2, 5),(3, 2, "i"^4)|`
Solve the following equation : `|(1, 4, 20),(1, -2, 5),(1, 2x, 5x^2)| = 0`
Evaluate: `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Solve: `|(2,x,3),(4,1,6),(1,2,7)|` = 0
If `|(4,3),(3,1)|` = -5 then the value of `|(20,15),(15,5)|` is:
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c,a+b)|`