Advertisements
Advertisements
प्रश्न
Solve the following equation : `|(1, 4, 20),(1, -2, 5),(1, 2x, 5x^2)| = 0`
उत्तर
`|(1, 4, 20),(1, -2, 5),(1, 2x, 5x^2)| = 0`
∴ `1|(-2, 5),(2x, 5x^2)| -4|(1, 5),(1, 5x^2)| + 20|(1, -2),(1, 2x)|` = 0
∴ 1(– 10x2 –10x) – 4(5x2 – 5) + 20(2x + 2) = 0
∴ – 10x2 – 10x – 20x2 + 20 + 40x + 40 = 0
∴ – 30x2 + 30x + 60 = 0
∴ x2 – x –2 = 0 ...[Dividing throughout by (– 30)]
∴ x2 – 2x + x – 2 = 0
∴ (x – 2)(x + 1) = 0
∴ x – 2 = 0 or x + 1 = 0
∴ x = 2 or x = – 1
APPEARS IN
संबंधित प्रश्न
Solve the following equation : `|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
Without expanding evaluate the following determinant:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Find |AB| if A = `[(3,-1),(2,1)]` and B = `[(3,0),(1,-2)]`
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
The value of x if `|(0,1,0),(x,2,x),(1,3,x)|` = 0 is
The value of `|(5,5,5),(4x,4y,4z),(-3x,-3y,-3z)|` is
If Δ = `|(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is cofactor of aij, then value of Δ is given by:
If `|(x,2),(8,5)|` = 0 then the value of x is
Evaluate `|(10041,10042,10043),(10045,10046,10047),(10049,10050,10051)|`
Evaluate the following determinants:
`|(a,h,g), (h,b,f), (g,f,c)|`
Without expanding evaluate the following determinant.
`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`
Without expanding evaluate the following determinant.
`|(1, a, a + c),(1, b, c+a), (1, c, a+b)|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Without expanding evaluate the following determinant.
`|(1,a,a+c),(1,b,c+a),(1,c,a+b)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(4 ,7),(-7 ,0)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c, a+b)|`
Evaluate the following determinant:
`|("a","h","g"),("h","b","f"),("g","f","c")|`
Evaluate the following determinant:
`[(4, 7) ,(-7, 0)]`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29.