Advertisements
Advertisements
Question
Solve the following equation : `|(1, 4, 20),(1, -2, 5),(1, 2x, 5x^2)| = 0`
Solution
`|(1, 4, 20),(1, -2, 5),(1, 2x, 5x^2)| = 0`
∴ `1|(-2, 5),(2x, 5x^2)| -4|(1, 5),(1, 5x^2)| + 20|(1, -2),(1, 2x)|` = 0
∴ 1(– 10x2 –10x) – 4(5x2 – 5) + 20(2x + 2) = 0
∴ – 10x2 – 10x – 20x2 + 20 + 40x + 40 = 0
∴ – 30x2 + 30x + 60 = 0
∴ x2 – x –2 = 0 ...[Dividing throughout by (– 30)]
∴ x2 – 2x + x – 2 = 0
∴ (x – 2)(x + 1) = 0
∴ x – 2 = 0 or x + 1 = 0
∴ x = 2 or x = – 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinants: `|(2"i", 3),(4, -"i")|`
Evaluate the following determinant:
`|(0, "a", -"b"),(-"a", 0, -"c"),("b", "c", 0)|`
Find x and y if `|(4"i", "i"^3, 2"i"),(1, 3"i"^2, 4),(5, -3, "i")|` = x + iy, where i = `sqrt(-1)`.
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
Prove that `|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|` = 0
Prove that `|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = 4a^2b^2c^2`
The value of the determinant `[(a,0,0),(0,b,0),(0,0,c)]^2` is
If A is a square matrix of order 3 and |A| = 3 then |adj A| is equal to:
The value of `|(x,x^2 - yz,1),(y,y^2-zx,1),(z,z^2-xy,1)|` is
If A = `|(cos theta,sin theta),(-sin theta,cos theta)|`, then |2A| is equal to
If `|(x,2),(8,5)|` = 0 then the value of x is
Evaluate the following determinants :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluation the following determination: `|(4,7),(-7, 0)| `
Evaluate the following determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Without expanding evaluate the following determinant.
`|(1,a,a + c),(1,b,c + a),(1,c,a + b)|`
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x, 2x, 3),(-1, 1, -4),(3, -3, 5)|` = 29
Evaluate the following determinant:
`|(a, h, g), (h, b, f), (g, f, c)|`