Advertisements
Advertisements
Question
Solve the following equation : `|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
Solution
`|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
∴ `x|(x, 2),(2, x)| - 2|(2, 2),(2, x)| + 2|(2, x),(2, 2)|` = 0
∴ x(x2 – 4) –2(2x – 4) + 2(4 – 2x) = 0
∴ x(x2 – 4) – 2(2x – 4) –2(2x – 4) = 0
∴ x(x + 2)(x – 2) – 4(2x – 4) = 0
∴ x(x + 2)(x – 2) – 8(x – 2) = 0
∴ (x – 2)[x(x + 2) – 8] = 0
∴ (x – 2)(x2 + 2x – 8) = 0
∴ (x – 2)(x2 + 4x – 2x –8) = 0
∴ (x – 2)(x + 4)(x – 2) = 0
∴ (x – 2)2(x + 4) = 0
∴ (x – 2)2 = 0 or x + 4 = 0
∴ x – 2 = 0 or x = – 4
∴ x = 2 or x = – 4
APPEARS IN
RELATED QUESTIONS
Evaluate the following determinants: `|(3, -4, 5),(1, 1, -2),(2, 3, 1)|`
Find the value(s) of x, if `|(2, 1, x + 1),(-1, 3, -4),(0, -5, 3)|` = 0
Evaluate: `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
Evaluate: `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Find the minors and cofactors of all the elements of the following determinant.
`|(1,-3,2),(4,-1,2),(3,5,2)|`
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
If `|(x,2),(8,5)|` = 0 then the value of x is
Show that `|(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2c,b^2c,0)| = 2a^3b^3c^3`
Evaluate the following determinants :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluation the following determination: `|(4,7),(-7, 0)| `
Without expanding evaluate the following determinant.
`|(1,a,a + c),(1,b,c + a),(1,c,a + b)|`
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Find the value of x if
`|(x, -1, 2),(2x, 1 , -3) ,(3, -4, 5)|` = 29
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|=29`
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant.
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`|("a","h","g"),("h","b","f"),("g","f","c")|`
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`