Advertisements
Advertisements
प्रश्न
Solve the following equation : `|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
उत्तर
`|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
∴ `x|(x, 2),(2, x)| - 2|(2, 2),(2, x)| + 2|(2, x),(2, 2)|` = 0
∴ x(x2 – 4) –2(2x – 4) + 2(4 – 2x) = 0
∴ x(x2 – 4) – 2(2x – 4) –2(2x – 4) = 0
∴ x(x + 2)(x – 2) – 4(2x – 4) = 0
∴ x(x + 2)(x – 2) – 8(x – 2) = 0
∴ (x – 2)[x(x + 2) – 8] = 0
∴ (x – 2)(x2 + 2x – 8) = 0
∴ (x – 2)(x2 + 4x – 2x –8) = 0
∴ (x – 2)(x + 4)(x – 2) = 0
∴ (x – 2)2(x + 4) = 0
∴ (x – 2)2 = 0 or x + 4 = 0
∴ x – 2 = 0 or x = – 4
∴ x = 2 or x = – 4
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
`|("a", "h", "g"),("h", "b", "f"),("g", "f","c")|`
Evaluate: `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Evaluate `|(10041,10042,10043),(10045,10046,10047),(10049,10050,10051)|`
Without expanding evaluate the following determinant.
`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`
Evaluate the following determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Evaluate the following determinant :
`|(4,7),(-7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|=29`
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|= 29`
Find the value of x if
`|(x, -1, 2),(2x, 1, -3), (3, -4, 5)| `= 29
By using properties of determinant prove that
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`[(3, -5, 2),(1, 8, 9),(3, 7, 0)]`
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`