Advertisements
Advertisements
प्रश्न
Solve the following equation : `|(1, 4, 20),(1, -2, 5),(1, 2x, 5x^2)| = 0`
उत्तर
`|(1, 4, 20),(1, -2, 5),(1, 2x, 5x^2)| = 0`
∴ `1|(-2, 5),(2x, 5x^2)| -4|(1, 5),(1, 5x^2)| + 20|(1, -2),(1, 2x)|` = 0
∴ 1(– 10x2 –10x) – 4(5x2 – 5) + 20(2x + 2) = 0
∴ – 10x2 – 10x – 20x2 + 20 + 40x + 40 = 0
∴ – 30x2 + 30x + 60 = 0
∴ x2 – x –2 = 0 ...[Dividing throughout by (– 30)]
∴ x2 – 2x + x – 2 = 0
∴ (x – 2)(x + 1) = 0
∴ x – 2 = 0 or x + 1 = 0
∴ x = 2 or x = – 1
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(5, 5, 5),(5, 4, 4),(5, 4, 8)|`
Evaluate the following determinants: `|(3, -4, 5),(1, 1, -2),(2, 3, 1)|`
Solve the following equation : `|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
Without expanding evaluate the following determinant:
`|(2, 3, 4),(5, 6, 8),(6x, 9x, 12x)|`
Evaluate: `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
Find the minors and cofactors of all the elements of the following determinant.
`|(5,20),(0, -1)|`
The value of `|(2x + y,x,y),(2y+z,y,z),(2z+x,z,x)|` is
The value of the determinant `[(a,0,0),(0,b,0),(0,0,c)]^2` is
Show that `|(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2c,b^2c,0)| = 2a^3b^3c^3`
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Evaluate the following determinant:
`|(a, h, g), (h, b, f), (g, f, c)|`
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|=29`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Evaluate the following determinant:
`[(4, 7) ,(-7, 0)]`
Evaluate the following determinant:
`[(a, h, g),(h, b, f),(g, f, c)]`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29.
Evaluate the following determinant:
`|(a, h, g),(h, b, f),(g, f, c)|`