Advertisements
Advertisements
प्रश्न
Solve: `|(2,x,3),(4,1,6),(1,2,7)|` = 0
उत्तर
`|(2,x,3),(4,1,6),(1,2,7)|` = 0
`2 |(1,6),(2,7)| - x|(4,6),(1,7)| + 3|(4,1),(1,2)|` = 0
2(7 – 12) – x(28 – 6) + 3(8 – 1) = 0
2(-5) – x(22) + 3(7) = 0
- 10 – 22x + 21 = 0
- 22x + 11 = 0
- 22x = - 11
x = `(-11)/(-22) = 1/2`
APPEARS IN
संबंधित प्रश्न
Prove that `|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = 4a^2b^2c^2`
If A is square matrix of order 3 then |kA| is
Evaluate the following determinants:
`|(a,h,g), (h,b,f), (g,f,c)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Evaluate the following determinant :
`|(a,h,g),(h,b,f),(g,f,c)|`
Without expanding evaluate the following determinant.
`|(1,a,a+c),(1,b,c+a),(1,c,a+b)|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(a,h ,g), (h,b,f), (g,f,c)|`
Evaluate the following determinant.
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`[(4, 7) ,(-7, 0)]`