Advertisements
Advertisements
प्रश्न
Solve: `|(2,x,3),(4,1,6),(1,2,7)|` = 0
उत्तर
`|(2,x,3),(4,1,6),(1,2,7)|` = 0
`2 |(1,6),(2,7)| - x|(4,6),(1,7)| + 3|(4,1),(1,2)|` = 0
2(7 – 12) – x(28 – 6) + 3(8 – 1) = 0
2(-5) – x(22) + 3(7) = 0
- 10 – 22x + 21 = 0
- 22x + 11 = 0
- 22x = - 11
x = `(-11)/(-22) = 1/2`
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
`|(4, 7),(-7, 0)|`
Find the value(s) of x, if `|(2, 1, x + 1),(-1, 3, -4),(0, -5, 3)|` = 0
Without expanding evaluate the following determinant:
`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`
Evaluate: `|(1,a,a^2 - bc),(1,b,b^2 - ca),(1,c,c^2 - ab)|`
The value of `|(x,x^2 - yz,1),(y,y^2-zx,1),(z,z^2-xy,1)|` is
Evaluate the following determinants :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Find the value of x if
`|(x, -1, 2),(2x, 1 , -3) ,(3, -4, 5)|` = 29
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`