Advertisements
Advertisements
प्रश्न
Find the value(s) of x, if `|(2, 1, x + 1),(-1, 3, -4),(0, -5, 3)|` = 0
उत्तर
`|(2, 1, x + 1),(-1, 3, -4),(0, -5, 3)|` = 0
∴ `2|(3, -4),(-5, 3)| - 1|(-1, -4),(0, 3)| + (x + 1) |(-1, 3),(0, -5)|` = 0
∴ 2(9 – 20) – 1 (– 3 – 0) + (x + 1) (5 –0) = 0
∴ 2(– 11) – 1(– 3) + (x + 1)(5) = 0
∴ – 22 + 3 + 5x + 5 = 0
∴ 5x = 14
∴ x = `14/5`
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
Without expanding evaluate the following determinant:
`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`
Find |AB| if A = `[(3,-1),(2,1)]` and B = `[(3,0),(1,-2)]`
Evaluate: `|(1,a,a^2 - bc),(1,b,b^2 - ca),(1,c,c^2 - ab)|`
Prove that `|(1/a,bc,b+c),(1/b,ca,c+a),(1/c,ab,a+b)|` = 0
The value of `|(2x + y,x,y),(2y+z,y,z),(2z+x,z,x)|` is
The value of the determinant `[(a,0,0),(0,b,0),(0,0,c)]^2` is
If Δ = `|(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is cofactor of aij, then value of Δ is given by:
Without expanding evaluate the following determinant.
`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`
Without expanding evaluate the following determinant.
`|(1,a,a + c),(1,b,c + a),(1,c,a + b)|`
Evaluate the following determinants:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(4, 7), (-7, 0)|`
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|=29`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|= 29`
Evaluate the following determinants:
`|(4, 7),(-7, 0)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c, a+b)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c,a+b)|`
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`
Evaluate the following determinant:
`|(a, h, g), (h, b, f), (g, f, c)|`