Advertisements
Advertisements
प्रश्न
Find the value(s) of x, if `|(2, 1, x + 1),(-1, 3, -4),(0, -5, 3)|` = 0
उत्तर
`|(2, 1, x + 1),(-1, 3, -4),(0, -5, 3)|` = 0
∴ `2|(3, -4),(-5, 3)| - 1|(-1, -4),(0, 3)| + (x + 1) |(-1, 3),(0, -5)|` = 0
∴ 2(9 – 20) – 1 (– 3 – 0) + (x + 1) (5 –0) = 0
∴ 2(– 11) – 1(– 3) + (x + 1)(5) = 0
∴ – 22 + 3 + 5x + 5 = 0
∴ 5x = 14
∴ x = `14/5`
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(2"i", 3),(4, -"i")|`
Evaluate the following determinant:
`|("a", "h", "g"),("h", "b", "f"),("g", "f","c")|`
Evaluate the following determinant:
`|(0, "a", -"b"),(-"a", 0, -"c"),("b", "c", 0)|`
Evaluate: `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Solve: `|(2,x,3),(4,1,6),(1,2,7)|` = 0
The cofactor of –7 in the determinant `|(2,-3,5),(6,0,4),(1,5,-7)|` is
The value of `|(5,5,5),(4x,4y,4z),(-3x,-3y,-3z)|` is
The value of `|(x,x^2 - yz,1),(y,y^2-zx,1),(z,z^2-xy,1)|` is
If Δ = `|(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is cofactor of aij, then value of Δ is given by:
Show that `|(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2c,b^2c,0)| = 2a^3b^3c^3`
Evaluate the following determinants :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Without expanding evaluate the following determinant.
`|(1, a, b+c), (1, b, c+a), (1, c, a+b)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c,a+b)|`
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant :
`|(a,h,g),(h,b,f),(g,f,c)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c,a+b)|`
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`
Evaluate the following determinant:
`[(4, 7) ,(-7, 0)]`