Advertisements
Advertisements
प्रश्न
Evaluate: `|(1,a,a^2 - bc),(1,b,b^2 - ca),(1,c,c^2 - ab)|`
उत्तर
`|(1,a,a^2 - bc),(1,b,b^2 - ca),(1,c,c^2 - ab)|`
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| + |(1,a,- bc),(1,b,- ca),(1,c,- ab)|` ...(By property 6)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - |(1,a,bc),(1,b,ca),(1,c,ab)|` ...(Take out -1 from C3)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - 1/"abc" |(a,a^2,abc),(b,b^2,abc),(c,c^2,abc)|` .....(Multiply R1 by a, R2 by b, R3 by c and divide the determinant by abc)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - "abc"/"abc" |(a,a^2,1),(b,b^2,1),(c,c^2,1)|` ....(Take out abc from C3)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| + |(a,1,a^2),(b,1,b^2),(c,1,c^2)|` ..... (C2 ↔ C3)
= `|(1,a,a^2),(1,b,b^2),(1,c,c^2)| - |(1,a,a^2),(1,b,b^2),(1,c,c^2)|` ..... (C1 ↔ C2)
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate: `|(1, -3, 12),(0, 2, -4),(9, 7, 2)|`
Find the minors and cofactors of all the elements of the following determinant.
`|(1,-3,2),(4,-1,2),(3,5,2)|`
The cofactor of –7 in the determinant `|(2,-3,5),(6,0,4),(1,5,-7)|` is
If Δ = `|(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is cofactor of aij, then value of Δ is given by:
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|= 29`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Find the value of x if `|(x, 2x, 3),(-1, 1, -4),(3, -3, 5)|` = 29