Advertisements
Advertisements
प्रश्न
Evaluate the following determinants: `|(5, 5, 5),(5, 4, 4),(5, 4, 8)|`
उत्तर
`|(5, 5, 5),(5, 4, 4),(5, 4, 8)|`
= `5|(4, 4),(4, 8)| - 5|(5, 4),(5, 8)| + 5|(5, 4),(5, 4)|`
= 5(32 – 16) –5(40 – 20) + 5(20 –20)
= 5(16) – 5(20) + 5(0)
= 80 –100
= – 20.
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
Evaluate the following determinants: `|(3, -4, 5),(1, 1, -2),(2, 3, 1)|`
Solve the following equation : `|(x, 2, 2),(2, x, 2),(2, 2, x)| = 0`
Find the minors and cofactors of all the elements of the following determinant.
`|(5,20),(0, -1)|`
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
Prove that `|(-a^2,ab,ac),(ab,-b^2,bc),(ac,bc,-c^2)| = 4a^2b^2c^2`
If Δ = `|(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is cofactor of aij, then value of Δ is given by:
If `|(x,2),(8,5)|` = 0 then the value of x is
Evaluate `|(10041,10042,10043),(10045,10046,10047),(10049,10050,10051)|`
Without actual expansion show that the value of the determinant `|(5,5^2,5^3),(5^2,5^3,5^4),(5^4,5^5,5^6)|` is zero.
Evaluate the following determinant :
`|(4,7),(-7,0)|`
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Evaluate the following determinant :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`
Without expanding evaluate the following determinant.
`|(1,a,a+c),(1,b,c+a),(1,c,a+b)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|= 29`
Evaluate the following determinants:
`|(4, 7),(-7, 0)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c, a+b)|`
Find the value of x if
`|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`[(3, -5, 2),(1, 8, 9),(3, 7, 0)]`