Advertisements
Advertisements
प्रश्न
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
उत्तर
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
= `3|(8, 9),(7, 0)| - (- 5)|(1, 9),(3, 0)| + 2|(1, 8),(3, 7)|`
= 3(0 – 63) + 5(0 – 27) + 2(7 – 24)
= 3(– 63) + 5(– 27) + 2(– 17)
= – 189 – 135 – 34
= –358
APPEARS IN
संबंधित प्रश्न
Evaluate the following determinants: `|(5, 5, 5),(5, 4, 4),(5, 4, 8)|`
Find the value of x, if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)|` = 29
Evaluate: `|(2, -5, 7),(5, 2, 1),(9, 0, 2)|`
Evaluate `|(3,-2,4),(2,0,1),(1,2,3)|`
Solve: `|(7,4,11),(-3,5,x),(-x,3,1)|` = 0
The value of `|(2x + y,x,y),(2y+z,y,z),(2z+x,z,x)|` is
The value of `|(5,5,5),(4x,4y,4z),(-3x,-3y,-3z)|` is
If `|(x,2),(8,5)|` = 0 then the value of x is
Solve: `|(x,2,-1),(2,5,x),(-1,2,x)|` = 0
Evaluate the following determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Evaluate the following determinant:
`|(4,7),(-7,0)|`
By using properties of determinant prove that
`|(x + y, y + z, z + x),(z, x, y),(1, 1, 1)|` = 0
Evaluate the following determinant.
`|(4,7),(-7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`
Evaluate the following determinant:
`|(4, 7),(-7, 0)|`