Advertisements
Advertisements
Question
Solve: `|(x,2,-1),(2,5,x),(-1,2,x)|` = 0
Solution
Expanding along R1 we get
`x|(5,x),(2,x)| - 2|(2,x),(-1,x)| - 1|(2,5),(-1,2)|` = 0
⇒ x(5x - 2x) - 2(2x + x) - 1(4 + 5) = 0
⇒ x(3x) - 2(3x) - 1(9) = 0
⇒ 3x2 - 6x - 9 = 0
⇒ x2 - 2x - 3 = 0 ....(Divided by 3)
⇒ (x - 3)(x + 1) = 0
⇒ x = 3 or -1
APPEARS IN
RELATED QUESTIONS
Find the minors and cofactors of all the elements of the following determinant.
`|(5,20),(0, -1)|`
The value of the determinant `[(a,0,0),(0,b,0),(0,0,c)]^2` is
If any three rows or columns of a determinant are identical then the value of the determinant is:
Without expanding evaluate the following determinant.
`|(1, a, a + c),(1, b, c+a), (1, c, a+b)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`
Evaluate the following determinant:
`|(a,h,g),(h,b,f),(g,f,c)|`
Evaluate the following determinant:
`[(4, 7) ,(-7, 0)]`
Evaluate the following determinant:
`[(3, -5, 2),(1, 8, 9),(3, 7, 0)]`
Evaluate the following determinant:
`|(3, -5, 2),(1, 8, 9),(3, 7, 0)|`