Advertisements
Advertisements
प्रश्न
Find x, y, x, if `{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`.
उत्तर
`{3[(2, 0),(0, 2),(2, 2)] -4[(1, 1),(-1, 2),(3, 1)]} [(1),(2)] = [(x - 3),(y - 1),(2z)]`
∴ `{[(6, 0),(0, 6),(6, 6)] - [(4, 4),(-4, 8),(12, 4)]} [(1),(2)]= [(x - 3),(y - 1),(2z)]`
∴ `[(6 - 4, 0-4),(0 + 4, 6 - 8),(6 - 12, 6 - 4)][(1),(2)]= [(x - 3),(y - 1),(2z)]`
∴ `[(2, -4),(4, -2),(-6, 2)][(1),(2)]= [(x - 3),(y - 1),(2z)]`
∴ `[(2 - 8),(4 - 4),(-6 + 4)] = [(x - 3),(y - 1),(2z)]`
∴ `[(-6),(0),(-2)]= [(x - 3),(y - 1),(2z)]`
∴ By equality of martices, we get
x – 3 = – 6, y – 1 = 0, 2z = – 2
∴ x = – 3, y = 1, z = – 1.
APPEARS IN
संबंधित प्रश्न
Evaluate : `[(3),(2),(1)][2 -4 3]`
Evaluate : `[2 - 1 3][(4),(3),(1)]`
If A = `[(-1, 1, 1),(2, 3, 0),(1, -3, 1)],"B" = [(2, 1, 4),(3, 0, 2),(1, 2, 1)]`, state whether AB = BA? Justify your answer.
Show that AB = BA, where A = `[(-2, 3, -1),(-1, 2, -1),(-6, 9, -4)],"B" = [(1, 3, -1),(2, 2, -1),(3, 0, -1)]`.
Verify A(BC) = (AB)C, if A = `[(1, 0, 1),(2, 3, 0),(0, 4, 5)], "B" = [(2, -2),(-1, 1),(0, 3)] and "C" = [(3,2,-1), (2,0,-2)]`
Verify that A(B + C) = AB + AC, if A = `[(4, -2),(2, 3)], "B" = [(-1, 1),(3, -2)] " and C" = [(4 ,1),(2, -1)]`.
If A = `[(1, 2, 2),(2, 1, 2),(2, 2, 1)]`, show that A2 – 4A is a scalar matrix.
If A = `[(1, 0),(-1, 7)]`, find k, so that A2 – 8A – kI = O, where I is a 2 × 2 unit and O is null matrix of order 2.
Find k, if A = `[(3, -2),(4, -2)]` and A2 = kA – 2I.
Solve the following :
If A = `[(2, 5),(3, 7)], "B" = 4[(1, 7),(-3, 0)]`, find matrix A – 4B + 7I, where I is the unit matrix of order 2.
Solve the following :
If A = `[(1, 5),(7, 8),(9, 5)], "B" = [(2, 4),(1, 5),(-8, 6)] "C" = [(-2, 3),(1, -5),(7, 8)]` then show that (A + B) + C = A + (B + C).
Solve the following :
If A = `[(2, -3),(3, -2),(-1, 4)],"B" = [(-3, 4, 1),(2, -1, -3)]`, verify (A + 2BT)T = AT + 2B.
Solve the following :
If A = `[(1, 2, 3),(2, 4, 6),(1, 2, 3)],"B" = [(1, -1, 1),(-3, 2, -1),(-2, 1, 0)]`, then show that AB and BA are bothh singular martices.
Solve the following :
If A = `[(2, -1),(-1, 2)]`, then show that A2 – 4A + 3I = 0.
Solve the following :
If A = `[(-3, 2),(2, 4)], "B" = [(1, "a"), ("b", 0)]` and (A + B) (A – B) = A2 – B2, find a and b.
Solve the following :
if A = `[(1, 2),(-1, 3)]`, then find A3.
State whether the following statement is True or False:
If A = `[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`, then AT = A
If A = `[(3, 1),(1, 5)]` and B = `[(1, 2),(5, -2)]`, then verify |AB| = |A||B|