Advertisements
Advertisements
प्रश्न
Find (x + y) ÷ (x − y), if
\[x = \frac{5}{4}, y = \frac{- 1}{3}\]
योग
उत्तर
\[x = \frac{5}{4}, y = \frac{- 1}{3}\]
So`(x+y)÷(x-y)=(5/4+ (-1)/3)÷(5/4- (-1)/3)`
`=11/12xx12/19=11/19`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Add the following rational numbers.
\[\frac{- 8}{11} and \frac{- 4}{11}\]
Add the following rational numbers:
\[\frac{5}{36} and \frac{- 7}{12}\]
Subtract the first rational number from the second in each of the following:
\[\frac{3}{8}, \frac{5}{8}\]
Simplify each of the following and write as a rational number of the form \[\frac{p}{q}:\]
\[\frac{5}{3} + \frac{3}{- 2} + \frac{- 7}{3} + 3\]
Simplify:
\[\left( \frac{- 9}{4} \times \frac{5}{3} \right) + \left( \frac{13}{2} \times \frac{5}{6} \right)\]
Simplify:
\[\left( \frac{13}{7} \times \frac{11}{26} \right) - \left( \frac{- 4}{3} \times \frac{5}{6} \right)\]
Find the value and express as a rational number in standard form:
\[\frac{2}{5} \div \frac{26}{15}\]
Insert a rational number between:
8 and 8.04
Arrange the following rational numbers in descending order.
`(-7)/(10), (-8)/(15) and (-11)/(30)`
Write the following numbers in the form `p/q` where p and q are integers:
Six-eighths