Advertisements
Advertisements
प्रश्न
For given vectors, `veca = 2hati - hatj + 2hatk` and `vecb = -hati + hatj - hatk`, find the unit vector in the direction of the vector `veca +vecb`.
उत्तर
The given vectors are,
`veca = 2hati - hatj + 2hatk`, and `vecb = -hati + hatj - hatk`
⇒ `veca = 2hati - hatj + 2hatk`
⇒ `vecb = -hati + hatj - hatk`
`therefore veca + vecb = (2 - 1)hati + (-1 + 1)hatj + (2 - 1)hatk = 1hati + 0hatj + 1hatk = hati + hatk`
∴ `|veca + vecb| = sqrt(1^2 + 1^2) `
`= sqrt2`
Hence, the unit vector in the direction of `((veca + vecb))/(|veca + vecb|) = (hati + hatk)/sqrt2 = 1/sqrt2hati + 1/sqrt2hatk`
APPEARS IN
संबंधित प्रश्न
Write the number of vectors of unit length perpendicular to both the vectors `veca=2hati+hatj+2hatk and vecb=hatj+hatk`
If `veca=4hati-hatj+hatk` then find a unit vector parallel to the vector `veca+vecb`
Find a vector in the direction of vector `5hati - hatj +2hatk` which has a magnitude of 8 units.
Show that the direction cosines of a vector equally inclined to the axes OX, OY, and OZ are `pm1/sqrt3, 1/sqrt3, 1/sqrt3`.
Identify the unit vector in the following.
How do you deduce that two vectors are perpendicular?
Compare the components for the following vector equations
(a) `"T"hatj - "mg"hatj = "ma"hatj`
(b) `vecT + vecF = vecA + vecB`
(c) `vecT - vecF = vecA - vecB`
(d) `"T"hatj + "mg"hatj = "ma"hatj`
If `overlinea`, `overlineb` and `overlinec` are three non-coplanar vectors then `(overlinea + overlineb + overlinec).[(overlinea + overlineb) xx (overlinea + overlinec)]` = ______
If `overline(a),overline(b),overline(c)` are non-coplanar vectors and λ is a real number then `[lambda(overline(a)+overline(b))lambda^2overline(b) lambda overline(c)]=[overline(a) overline(b)+overline(c) overline(b)]` for ______.
If the horizontal and vertical components of a force are negative, then that force is acting in between
Find the vector component of the vector with initial point (2, 1) and terminal point (–5, 7).
Unit vector perpendicular to the plane of the triangle ABC with position vectors `veca, vecb, vecc` of the vertices A, B, C is ______.
If a line makes angles 120° and 60° with the positive directions of X and Z axes respectively then the angle made by the line with positive Y-axis is ______.
Two vectors `veca = a_1 hati + a_2 hatj + a_3 hatk` and `vecb = b_1 hati + b_2 hatj + b_3 hatk` are collinear if ______.
If `veca = 4hati + 6hatj` and `vecb = 3hatj + 4hatk`, then the vector form of the component of `veca` along `vecb` is ______.
Check whether the vectors `2hati +2hatj +3hatk,-3hati +3hatj +2hatk and 3hati + 4hatk` From a triangle or not.
If `4hati - 5hatj + hatk, 2hati + 3hatj + 3hatk` and `xhati + yhatj + zhatk` represent the sides AB, BC and AC respectively of a triangle ABC, then find x, y, z.
Check whether the vectors `2hati + 2hatj +3hatk, -3hati +3hatj +2hatk` and `3hati +4hatk` form a triangle or not.
Check whether the vectors `2hati + 2hatj+ 3hatk`, `-3hati + 3hatj +2hatk` and `3hati + 4hatk` form a triangle or not.
If `veca = 3hati - 2hatj + hatk` and `vecb = 2hati - 4hatj - 3hatk` then the value of `|veca - 2vecb|` will be ______.
Shown below is a cuboid. Find `vec(BA).vec(BC)`