हिंदी

For What Value of K, (4 - K)X2 + (2k + 4)X + (8k + 1) = 0, is a Perfect Square. - Mathematics

Advertisements
Advertisements

प्रश्न

For what value of k,  (4 - k)x2 + (2k + 4)x + (8k + 1) = 0, is a perfect square.

उत्तर

The given quadric equation is (4 - k)x2 + (2k + 4)x + (8k + 1) = 0, and roots are real and equal

Then find the value of k.

Here, a = (4 - k), b = (2k + 4) and c = (8k + 1)

As we know that D = b2 - 4ac

Putting the value of a = (4 - k), b = (2k + 4) and c = (8k + 1)

= (2k + 4)2 - 4 x (4 - k) x (8k + 1)

= 4k2 + 16k - 16 - 4(4 + 31k - 8k2)

= 4k2 + 16k - 16 - 16 - 124k + 32k2

= 36k2 - 108k + 0

= 36k2 - 108k

The given equation will have real and equal roots, if D = 0

Thus,

36k2 - 108k = 0

18k(2k - 6) = 0

k(2k - 6) = 0

Now factorizing of the above equation

k(2k - 6) = 0

So, either

k = 0

or

2k - 6 = 0

2k = 6

k = 6/2 = 3

Therefore, the value of k = 0, 3.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Quadratic Equations - Exercise 4.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 4 Quadratic Equations
Exercise 4.6 | Q 7 | पृष्ठ ४२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×