हिंदी

Find the Values Of K For Which the Given Quadratic Equation Has Real and Distinct Roots: X2 - Kx + 9 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of k for which the given quadratic equation has real and distinct roots:

x2 - kx + 9 = 0

उत्तर

The given quadric equation is x2 - kx + 9 = 0, and roots are real and distinct

Then find the value of k.

Here,

a = 1, b = (-k) and c = 9

As we know that D = b2 - 4ac

Putting the value of a = 1, b = (-k) and c = 9

D = (-k)2 - 4 x (1) x (9)

= k2 - 36

The given equation will have real and distinct roots, if D > 0

k2 - 36 > 0

Now factorizing of the above equation

k2 - 36 > 0

k2  > 36

`k>sqrt36=+-6`

k < -6 Or k > 6

Therefore, the value of k < -6 Or k > 6.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Quadratic Equations - Exercise 4.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 4 Quadratic Equations
Exercise 4.6 | Q 6.3 | पृष्ठ ४२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×