Advertisements
Advertisements
प्रश्न
Find the values of k for which the given quadratic equation has real and distinct roots:
kx2 + 6x + 1 = 0
उत्तर
The given quadric equation is kx2 + 6x + 1 = 0, and roots are real and distinct.
Then find the value of k.
Here,
a = k, b = 6 and c = 1
As we know that D = b2 - 4ac
Putting the value of a = k, b = 6 and c = 1
D = (6)2 - 4 x (k) x (1)
= 36 - 4k
The given equation will have real and distinct roots, if D > 0
36 - 4k > 0
Now factorizing of the above equation
36 - 4k > 0
4k < 36
k < 36/4
k < 9
Now according to question, the value of k less than 9
Therefore, the value of k < 9.
APPEARS IN
संबंधित प्रश्न
Find the values of k for which the roots are real and equal in each of the following equation:
x2 - 2(5 + 2k)x + 3(7 + 10k) = 0
Find the values of k for which the roots are real and equal in each of the following equation:
5x2 - 4x + 2 + k(4x2 - 2x - 1) = 0
For what value of k, the roots of the equation x2 + 4x + k = 0 are real?
Determine whether the given values of x is the solution of the given quadratic equation below:
6x2 - x - 2 = 0; x = `(2)/(3), -1`.
Find the values of k so that the sum of tire roots of the quadratic equation is equal to the product of the roots in each of the following:
2x2 - (3k + 1)x - k + 7 = 0.
If `sqrt(2)` is a root of the equation `"k"x^2 + sqrt(2x) - 4` = 0, find the value of k.
The roots of the quadratic equation `"x" + 1/"x" = 3`, x ≠ 0 are:
The roots of the equation (b – c) x2 + (c – a) x + (a – b) = 0 are equal, then:
Solve the quadratic equation: `x^2 + 2sqrt(2)x - 6` = 0 for x.
Complete the following activity to determine the nature of the roots of the quadratic equation x2 + 2x – 9 = 0 :
Solution :
Compare x2 + 2x – 9 = 0 with ax2 + bx + c = 0
a = 1, b = 2, c = `square`
∴ b2 – 4ac = (2)2 – 4 × `square` × `square`
Δ = 4 + `square` = 40
∴ b2 – 4ac > 0
∴ The roots of the equation are real and unequal.