Advertisements
Advertisements
प्रश्न
If `sqrt(2)` is a root of the equation `"k"x^2 + sqrt(2x) - 4` = 0, find the value of k.
उत्तर
`"k"x^2 + sqrt(2x) - 4 = 0, x = sqrt(2)`
x = `sqrt(2)` is its solution
∴ `"k"(sqrt(2))^2 + sqrt(2) xx sqrt(2) - 4` = 0
⇒ 2k + 2 - 4 = 0
⇒ 2k - 2 = 0
⇒ 2k = 2
⇒ k = `(2)/(2)`
∴ k = 1
APPEARS IN
संबंधित प्रश्न
Find that non-zero value of k, for which the quadratic equation kx2 + 1 − 2(k − 1)x + x2 = 0 has equal roots. Hence find the roots of the equation.
Without solving, examine the nature of roots of the equation 2x2 – 7x + 3 = 0
Find the values of k for which the roots are real and equal in each of the following equation:
kx(x - 2) + 6 = 0
Find the value of k for which the following equation has equal roots:
(k − 12)x2 + 2(k − 12)x + 2 = 0.
If x = 2 and x = 3 are roots of the equation 3x² – 2kx + 2m = 0. Find the values of k and m.
Without actually determining the roots comment upon the nature of the roots of each of the following equations:
x2 - 4x + 1 = 0
Find the value of k so that sum of the roots of the quadratic equation is equal to the product of the roots:
kx2 + 6x - 3k = 0, k ≠ 0
Find the values of k so that the sum of tire roots of the quadratic equation is equal to the product of the roots in each of the following:
kx2 + 2x + 3k = 0
Discuss the nature of the roots of the following quadratic equations : `3x^2 - 2x + (1)/(3)` = 0
Which of the following equations has two real and distinct roots?