हिंदी

For what values of a and b is the function f(x) = ax + 2b + 18 for x ≤ 0 = x2 + 3a − b for 0 < x ≤ 2 = 8x – 2 for x > 2, continuous for every x ? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For what values of a and b is the function

f(x) = ax + 2b + 18    for x ≤ 0

= x2 + 3a − b            for 0 < x ≤ 2

= 8x – 2                     for x > 2,

continuous for every x ?

योग

उत्तर

Function f is continuous for every x.
∴ Function f is continuous at x = 0 and x = 2
As f is continuous at x = 0.
∴ `lim_(x→0^-) "f"(x) = lim_(x→0^+) "f"(x)`

∴ `lim_(x→0^-) ("a"x + 2"b" + 18) = lim_(x→0^+) (x^2 + 3"a - b")`

∴ a(0) + 2b + 18 = (0)2 + 3a - b
∴ 3a - 3b = 18
∴ a – b = 6       ...(i)
Also, Function f is continous at x = 2
∴ `lim_(x→2^-) "f"(x) = lim_(x→2^+) "f"(x)`

∴ `lim_(x→2^-) (x^2 + 3"a - b") = lim_(x→2^+) (8x - 2)`

∴ (2)2 + 3a – b = 8 (2) – 2
∴ 4 + 3a – b = 14
∴ 3a – b = 10        …(ii)
Subtracting (i) from (ii), we get
2a = 4
∴ a = 2
Substituting a = 2 in (i), we get
2 - b = 6
∴ b = – 4
∴ a = 2 and b = – 4

shaalaa.com
Continuity in the Domain of the Function
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - Exercise 8.1 [पृष्ठ ११२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
Exercise 8.1 | Q 4. (iii) | पृष्ठ ११२

संबंधित प्रश्न

Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = –2.


Examine the continuity of f(x) = `(x^2 - 9)/(x - 3)` on R.


If `f(x) = (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)` for x ≠ 0

            = k,                               for x = 0
is continuous at x = 0, find k.


Discuss the continuity of the following function at the point(s) or in the interval indicated against them.

`f(x) = (3^x + 3^-x - 2)/x^2`  for x ≠ 0.

= (log3)2                         for x = 0 at x = 0


If `f(x) = (5^x + 5^-x - 2)/(x^2)`  for x ≠ 0

          = k                            for x = 0
is continuous at x = 0, find k


For what values of a and b is the function

`f(x) = (x^2 - 4)/(x - 2)`      for x < 2

= ax2 − bx + 3         for 2 ≤ x < 3
= 2x – a + b             for x ≥ 3
continuous in its domain.


f(x) = `(sqrt(x + 3) - 2)/(x^3 - 1)`  for x ≠ 1

= 2    for x = 1, at x = 1.


Find a and b if the following function is continuous at the point indicated against them.

`f(x) = x^2 + a`    , for x ≥ 0

= `2sqrt(x^2 + 1) + b` , for x < 0 and
f(1) = 2 is continuous at x = 0


The domain of the function cos-1 (log2(x2 + 5x + 8)) is


Domain of the function f(x) = `sqrt(1 + 4x - x^2)` is ______


Domain of the function f(x) = sin-1 (1 + 3x + 2x2) is ______.


If the function f(x) = `(2x - sin^-1x)/(2x + tan^-1x)`, (x ≠ 0) is continuous at each point of its domain, then the value of f(0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×