हिंदी

For what values of a and b is the function f(x)=x2-4x-2 for x < 2 = ax2 − bx + 3 for 2 ≤ x < 3= 2x – a + b for x ≥ 3continuous in its domain. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For what values of a and b is the function

`f(x) = (x^2 - 4)/(x - 2)`      for x < 2

= ax2 − bx + 3         for 2 ≤ x < 3
= 2x – a + b             for x ≥ 3
continuous in its domain.

योग

उत्तर

Function f is continuous for every x on R.
∴ Function f is continuous at x = 2 and x = 3.
As f is continuous at x = 2.

∴ `lim_(x→2^-) "f"(x) = lim_(x→2^+) "f"(x)`

∴ `lim_(x→2^-) (x^2 - 4)/(x - 2) = lim_(x→2^+) ("a"x^2 - "b"x + 3)`

∴ `lim_(x→2^-) ((x - 2)(x + 2))/(x - 2) = lim_(x→2^+) ("a"x^2 - "b"x + 3)`

∴ `lim_(x→2^-) (x + 2) = lim_(x→2^+) ("a"x^2 - "b"x + 3) ...[(because x → 2 therefore x ≠ 2),(therefore x - 2 ≠ 0)]`

∴ 2 + 2 = a(2)2 – b(2) + 3
∴ 4 = 4a – 2b + 3
∴ 4a – 2b = 1       ...(i)
Also function f is continuous at x = 3
∴ `lim_(x→3^-) "f"(x) = lim_(x→3^+) "f"(x)`

∴ `lim_(x→3^-) ("a"x^2 - "b"x + 3) = lim_(x→3^+) (2x - "a + b")`

∴ a(3)2 – b(3) + 3 = 2(3) – a + b
∴ 9a – 3b + 3 = 6 – a + b
∴ 10a – 4b = 3    ...(ii)
Multiplying (i) by 2, we get
8a – 4b = 2        ...(iii)
Subtracting (iii) from (ii), we get
2a = 1

∴ a = `1/2`

Substituting a = `1/2` in (i), we get

`4(1/2) - 2"b" = 1`

∴ 2 – 2b = 1
∴ 1 = 2b

∴ b = `1/2`

∴ a = `1/2` and b = `1/2`

shaalaa.com
Continuity in the Domain of the Function
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Continuity - Exercise 8.1 [पृष्ठ ११२]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 11 Standard Maharashtra State Board
अध्याय 8 Continuity
Exercise 8.1 | Q 4. (iv) | पृष्ठ ११२

संबंधित प्रश्न

Examine the continuity of f(x) = x3 + 2x2 − x − 2 at x = –2.


Examine the continuity of f(x) = `(x^2 - 9)/(x - 3)` on R.


If `f(x) = (24^x - 8^x - 3^x + 1)/(12^x - 4^x - 3^x + 1)` for x ≠ 0

            = k,                               for x = 0
is continuous at x = 0, find k.


Discuss the continuity of the following function at the point(s) or in the interval indicated against them.

`f(x) = (3^x + 3^-x - 2)/x^2`  for x ≠ 0.

= (log3)2                         for x = 0 at x = 0


If `f(x) = (5^x + 5^-x - 2)/(x^2)`  for x ≠ 0

          = k                            for x = 0
is continuous at x = 0, find k


For what values of a and b is the function

f(x) = ax + 2b + 18    for x ≤ 0

= x2 + 3a − b            for 0 < x ≤ 2

= 8x – 2                     for x > 2,

continuous for every x ?


f(x) = `(sqrt(x + 3) - 2)/(x^3 - 1)`  for x ≠ 1

= 2    for x = 1, at x = 1.


Find a and b if the following function is continuous at the point indicated against them.

`f(x) = x^2 + a`    , for x ≥ 0

= `2sqrt(x^2 + 1) + b` , for x < 0 and
f(1) = 2 is continuous at x = 0


The domain of the function cos-1 (log2(x2 + 5x + 8)) is


Domain of the function f(x) = `sqrt(1 + 4x - x^2)` is ______


Domain of the function f(x) = sin-1 (1 + 3x + 2x2) is ______.


If the function f(x) = `(2x - sin^-1x)/(2x + tan^-1x)`, (x ≠ 0) is continuous at each point of its domain, then the value of f(0) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×