हिंदी

For which value(s) of λ, do the pair of linear equations λx + y = λ2 and x + λy = 1 have a unique solution? - Mathematics

Advertisements
Advertisements

प्रश्न

For which value(s) of λ, do the pair of linear equations λx + y = λ2 and x + λy = 1 have a unique solution?

योग

उत्तर

The given pair of linear equations is

λx + y = λ2 and x + λy = 1

a1 = λ, b1 = 1, c1 = – λ2

a2 = 1, b2 = λ, c2 = –1

The given equations are

λx + y – λ2 = 0

x + λy – 1 = 0

Comparing the above equations with ax + by + c = 0

We get,

a1 = λ, b1 = 1, c1 = – λ2

a2 = 1, b2 = λ, c2 = – 1

`a_1/a_2 = λ/1`

`b_1/b_2 = 1/λ`

`c_1/c_2 = λ^2` 

For a unique solution,

`a_1/a_2 ≠ b_1/b_2`

So λ ≠ `1/λ`

Hence, λ2 ≠ 1

λ ≠ ±1

So, all real values of λ except ±1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Pair of Liner Equation in Two Variable - Exercise 3.3 [पृष्ठ २५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 3 Pair of Liner Equation in Two Variable
Exercise 3.3 | Q 1.(iii) | पृष्ठ २५
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×