Advertisements
Advertisements
प्रश्न
Frequency distribution of daily commission received by 100 salesmen is given below :
Daily Commission (in Rs.) |
No. of Salesmen |
100-120 | 20 |
120-140 | 45 |
140-160 | 22 |
160-180 | 09 |
180-200 | 04 |
Find mean daily commission received by salesmen, by the assumed mean method.
उत्तर
Daily commission | Classmark |
`d_i = x_i - A` `d_i = x_i - 150` |
No. of salemen `F_i` |
`f_id_i` |
100 120 | 110 | -40 | 20 | -800 |
120 140 | 130 | -20 | 45 | -900 |
140 160 | 150→A | 0 | 22 | 0 |
160 180 | 170 | 20 | 09 | 180 |
180 200 | 190 | 40 | 04 | 160 |
`sumf_i = 100` | `sumf_ix_i = -1360` |
`bard = (sumf_id_i)/(sumf)` = `1360/100 = -13.60`
`:. barx = A + bard = 150 + (-13.60) = 136.4`
APPEARS IN
संबंधित प्रश्न
The following table gives the frequency distribution of trees planted by different Housing Societies in a particular locality:
No. of Trees | No. of Housing Societies |
10-15 | 2 |
15-20 | 7 |
20-25 | 9 |
25-30 | 8 |
30-35 | 6 |
35-40 | 4 |
Find the mean number of trees planted by Housing Societies by using ‘Assumed Means Method’
A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.
Number of plants | 0 - 2 | 2 - 4 | 4 - 6 | 6 - 8 | 8 - 10 | 10 - 12 | 12 - 14 |
Number of houses | 1 | 2 | 1 | 5 | 6 | 2 | 3 |
Which method did you use for finding the mean, and why?
The following table gives the number of boys of a particular age in a class of 40 students. Calculate the mean age of the students
Age (in years) | 15 | 16 | 17 | 18 | 19 | 20 |
No. of students | 3 | 8 | 10 | 10 | 5 | 4 |
The number of telephone calls received at an exchange per interval for 250 successive one minute intervals are given in the following frequency table:
No. of calls(x) | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
No. of intervals (f) | 15 | 24 | 29 | 46 | 54 | 43 | 39 |
Compute the mean number of calls per interval.
Find the mean of each of the following frequency distributions
Class interval | 10 - 30 | 30 - 50 | 50 - 70 | 70 - 90 | 90 - 110 | 110 - 130 |
Frequency | 5 | 8 | 12 | 20 | 3 | 2 |
Find the mean of the following frequency distribution is 57.6 and the total number of observation is 50.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 7 | `f_1` | 12 | `f_2` | 8 | 5 |
Find the mean of the following data using step-deviation method:
Class | 500 – 520 | 520 – 540 | 540 – 560 | 560 – 580 | 580 – 600 | 600 – 620 |
Frequency | 14 | 9 | 5 | 4 | 3 | 5 |
Find the mean age from the following frequency distribution:
Age (in years) | 25 – 29 | 30 – 34 | 35 – 39 | 40 – 44 | 45 – 49 | 50 – 54 | 55 – 59 |
Number of persons | 4 | 14 | 22 | 16 | 6 | 5 | 3 |
If the arithmetic mean of x, x + 3, x + 6, x + 9, and x + 12 is 10, the x =
If the mean of first n natural numbers is \[\frac{5n}{9}\], then n =
The mean of first n odd natural number is
The mean of first n odd natural numbers is \[\frac{n^2}{81}\],then n =
Find the mean of the following distribution:
x | 10 | 30 | 50 | 70 | 89 |
f | 7 | 8 | 10 | 15 | 10 |
If the mean of n observation ax1, ax2, ax3,....,axn is a`bar"X"`, show that `(ax_1 - abar"X") + (ax_2 - abar"X") + ...(ax_"n" - abar"X")` = 0.
The value of `sum_(i=1)^nx_i` is ______.
An aircraft has 120 passenger seats. The number of seats occupied during 100 flights is given in the following table:
Number of seats | 100 – 104 | 104 – 108 | 108 – 112 | 112 – 116 | 116 – 120 |
Frequency | 15 | 20 | 32 | 18 | 15 |
The mean of the following frequency distribution is 25. Find the value of f.
Class | 0 – 10 | 10 – 20 | 20 – 30 | 30 – 40 | 40 – 50 |
Frequency | 5 | 18 | 15 | f | 6 |
Find the mean of the following frequency distribution:
Class: | 10 – 15 | 15 – 20 | 20 – 25 | 25 – 30 | 30 – 35 |
Frequency: | 4 | 10 | 5 | 6 | 5 |