Advertisements
Advertisements
प्रश्न
From a point O in the interior of a ∆ABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove
that :
`(i) AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 – OD^2 – OE^2 – OF^2`
`(ii) AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2`
उत्तर
Let O be a point in the interior of ∆ABC and let OD ⊥ BC, OE ⊥ CA and OF ⊥ AB.
(i) In right triangles ∆OFA, ∆ODB and ∆OEC, we have
`OA^2 = AF^2 + OF^2`
`OB^2 = BD^2 + OD^2`
and,
`OC^2 = CE^2 + OE^2`
Adding all these results, we get
`OA^2 + OB^2 + OC^2 = AF^2 + BD^2 + CE^2 + OF^2 + OD^2 + OE^2`
`⇒ AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 – OD^2 – OE^2 – OF^2`
(ii) In right triangles ∆ODB and ∆ODC, we have
`OB^2 = OD^2 + BD^2`
and, `OC^2 = OD^2 + CD^2`
`OB^2 – OC^2 = (OD^2 + BD^2 ) – (OD^2 + CD^2 )`
`⇒ OB^2 – OC^2 = BD^2 – CD^2 ….(i)`
Similarly, we have
`OC^2 – OA^2 = CE^2 – AE^2 ….(ii)`
and, `OA^2 – OB^2 = AF^2 – BF^2 ….(iii)`
Adding (i), (ii) and (iii), we get
`(OB^2 – OC^2 ) + (OC^2 – OA^2 ) + (OA^2 – OB^2 )`
`= (BD^2 – CD^2 ) + (CE^2 – AE^2 ) + (AF^2 – BF^2 )`
`⇒ (BD^2 + CE^2 + AF^2 ) – (AE^2 + CD^2 + BF^2 ) = 0`
`⇒ AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2`