हिंदी

From the top of a building 30 m high, the top and bottom of a tower are observed to have angles of depression 30º and 45º respectively. Find the height of the tower -

Advertisements
Advertisements

प्रश्न

From the top of a building 30 m high, the top and bottom of a tower are observed to have angles of depression 30º and 45º respectively. Find the height of the tower

योग

उत्तर

Let AB be the building and CD be the tower.

Then, AB = 30 m. Let DC = x.

Draw DE ⊥ AB. Then AE = CD = x.

∴ BE = (30 – x) m.

`\text{Now, }\frac{AC}{AB}=\text{cot 45}^\text{o}=1`

`\Rightarrow \frac{AC}{30}=1\Rightarrow AC=30 m`

∴ DE = AC = 30 m.

`\frac{BE}{DE}=\text{tan }30^\text{o}=\frac{1}{\sqrt{3}}`

`\Rightarrow\frac{BE}{30}=\frac{1}{\sqrt{3}}`

`\Rightarrow BE=\frac{30}{\sqrt{3}}`

`\therefore CD=AE=AB-BE=( 30-\frac{30}{\sqrt{3}} ) `

`=30( 1-\frac{1}{\sqrt{3}})m`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×