Advertisements
Advertisements
Question
From the top of a building 30 m high, the top and bottom of a tower are observed to have angles of depression 30º and 45º respectively. Find the height of the tower
Sum
Solution
Let AB be the building and CD be the tower.
Then, AB = 30 m. Let DC = x.
Draw DE ⊥ AB. Then AE = CD = x.
∴ BE = (30 – x) m.
`\text{Now, }\frac{AC}{AB}=\text{cot 45}^\text{o}=1`
`\Rightarrow \frac{AC}{30}=1\Rightarrow AC=30 m`
∴ DE = AC = 30 m.
`\frac{BE}{DE}=\text{tan }30^\text{o}=\frac{1}{\sqrt{3}}`
`\Rightarrow\frac{BE}{30}=\frac{1}{\sqrt{3}}`
`\Rightarrow BE=\frac{30}{\sqrt{3}}`
`\therefore CD=AE=AB-BE=( 30-\frac{30}{\sqrt{3}} ) `
`=30( 1-\frac{1}{\sqrt{3}})m`
shaalaa.com
Is there an error in this question or solution?