English

From the top of a building 30 m high, the top and bottom of a tower are observed to have angles of depression 30º and 45º respectively. Find the height of the tower -

Advertisements
Advertisements

Question

From the top of a building 30 m high, the top and bottom of a tower are observed to have angles of depression 30º and 45º respectively. Find the height of the tower

Sum

Solution

Let AB be the building and CD be the tower.

Then, AB = 30 m. Let DC = x.

Draw DE ⊥ AB. Then AE = CD = x.

∴ BE = (30 – x) m.

`\text{Now, }\frac{AC}{AB}=\text{cot 45}^\text{o}=1`

`\Rightarrow \frac{AC}{30}=1\Rightarrow AC=30 m`

∴ DE = AC = 30 m.

`\frac{BE}{DE}=\text{tan }30^\text{o}=\frac{1}{\sqrt{3}}`

`\Rightarrow\frac{BE}{30}=\frac{1}{\sqrt{3}}`

`\Rightarrow BE=\frac{30}{\sqrt{3}}`

`\therefore CD=AE=AB-BE=( 30-\frac{30}{\sqrt{3}} ) `

`=30( 1-\frac{1}{\sqrt{3}})m`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×